针对深度学习框架版本的讨论

目录

一、前言

二、深度学习版本匹配

三、各种深度学习必要组件的下载地址和截图


一、前言

最近几天,由于需要安装新的深度学习环境,我对当前的版本匹配和安装方式进行了记录。

由于安装环境需要版本匹配,因此在不知道各种环境的匹配情况就下载CUDA等组件会出现浪费时间和流量的行为。

二、深度学习版本匹配

1.Python 3.7(Anaconda3 5.3.0) + CUDA 9.0/CUDA 10.0

Tensorflow 1.13以上

pytorch 0.4.0以上

2.Python 3.6 (Anaconda3 5.2.0)+ CUDA9.0

TensorFlow 1.8.0

Pytorch 0.4.0以上 (torchvision 0.2.1)

3.Python 3.5 + CUDA8.0

TensorFlow 1.3.0

三、各种深度学习必要组件的下载地址和截图

1.Anaconda:https://repo.anaconda.com/archive/

2.CUDA:https://developer.nvidia.com/cuda-toolkit-archive

3.cuDNN:https://developer.nvidia.com/rdp/cudnn-archive

4.TensorFlow(清华镜像):https://pypi.tuna.tsinghua.edu.cn/packages/

5.Pytorch:https://download.pytorch.org/whl/torch_stable.html

悲恋花丶无心之人 CSDN认证博客专家 深度学习 神经网络 Pytorch
计算机视觉在读研究生,熟悉Pytorch,MXNet,TensorFlow,Keras等深度学习框架,主要涉及的领域有目标检测,语义分割,超分辨率重建,行人重识别等。
个人GitHub网址为:https://github.com/nickhuang1996
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值