leetcode_657. 机器人能否返回原点 python3

目录

一、题目内容

二、解题思路

三、代码


一、题目内容

在二维平面上,有一个机器人从原点 (0, 0) 开始。给出它的移动顺序,判断这个机器人在完成移动后是否在 (0, 0) 处结束。

移动顺序由字符串表示。字符 move[i] 表示其第 i 次移动。机器人的有效动作有 R(右),L(左),U(上)和 D(下)。如果机器人在完成所有动作后返回原点,则返回 true。否则,返回 false。

注意:机器人“面朝”的方向无关紧要。 “R” 将始终使机器人向右移动一次,“L” 将始终向左移动等。此外,假设每次移动机器人的移动幅度相同。

示例 1:

输入: "UD"
输出: true
解释:机器人向上移动一次,然后向下移动一次。所有动作都具有相同的幅度,因此它最终回到它开始的原点。因此,我们返回 true。

示例 2:

输入: "LL"
输出: false
解释:机器人向左移动两次。它最终位于原点的左侧,距原点有两次 “移动” 的距离。我们返回 false,因为它在移动结束时没有返回原点。

二、解题思路

字典存上下左右个数,比较上下和左右的个数是否都分别相等

三、代码

class Solution:
    def judgeCircle(self, moves: str) -> bool:
        move_count_dict = {}
        move_count_dict['U'] = 0
        move_count_dict['D'] = 0
        move_count_dict['L'] = 0
        move_count_dict['R'] = 0
        for move in moves:
           move_count_dict[move] += 1
        return move_count_dict['U'] == move_count_dict['D'] and \
                move_count_dict['L'] == move_count_dict['R']


if __name__ == '__main__':
    test = "UDLLRDUR"
    s = Solution()
    ans = s.judgeCircle(test)
    print(ans)
悲恋花丶无心之人 CSDN认证博客专家 深度学习 神经网络 Pytorch
计算机视觉在读研究生,熟悉Pytorch,MXNet,TensorFlow,Keras等深度学习框架,主要涉及的领域有目标检测,语义分割,超分辨率重建,行人重识别等。
个人GitHub网址为:https://github.com/nickhuang1996
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值