【CVPR2020】Pose-guided Visible Part Matching for Occluded Person ReID 【Windows可运行github库PVPM_Windows】

目录

一、说明

二、修正部分说明

三、联系方式


一、说明

这是针对于CVPR2020《Pose-guided Visible Part Matching for Occluded Person ReID》PVPM代码的Windows版本GitHub库,由本人亲自完成修正和测试,地址为:

https://github.com/nickhuang1996/PVPM_Windows

原始Linux库:https://github.com/hh23333/PVPM


二、修正部分说明

1.对于测试部分的修正,包括rank_cy.pyx文件的修正,setup.py文件的修正以及读取加载模型的修正;

2.编译需要使用Visual Studio 2017Visual Studio 2019进行编译,编译运行:

python setup.py develop

3.添加了测试指令的说明;

4. 测试结果:

market1501为例

** Arguments **
adam_beta1: 0.9
adam_beta2: 0.999
app: image
arch: pcb_p6
base_lr_mult: 0.5
batch_size: 128
combineall: False
cuhk03_classic_split: False
cuhk03_labeled: False
dist_metric: euclidean
eval_freq: -1
evaluate: True
fixbase_epoch: 0
gamma: 0.1
gpu_devices: 0
graph_matching: False
height: 384
label_smooth: False
load_pose: False
load_weights: D:/weights_results/PVPM/pretrained_models/Pretrain_PCB_model.pth.tar-60
loss: softmax
lr: 0.02
lr_scheduler: multi_step
margin: 0.3
market1501_500k: False
max_epoch: 60
momentum: 0.9
new_layers: ['classifier', 'em']
no_pretrained: False
normalize_feature: False
num_att: 6
num_instances: 4
open_layers: ['classifier', 'fc']
optim: sgd
part_score: False
pooling_method: avg
print_freq: 20
ranks: [1, 3, 5, 10, 20]
reg_matching_score_epoch: 5
rerank: False
resume: 
rmsprop_alpha: 0.99
root: D:/datasets/ReID_dataset
sample_method: evenly
save_dir: D:/weights_results/PVPM/market_PCB
seed: 1
seq_len: 15
sgd_dampening: 0
sgd_nesterov: False
sources: ['market1501']
split_id: 0
staged_lr: True
start_epoch: 0
start_eval: 60
stepsize: [25, 50]
targets: ['market1501']
train_sampler: RandomSampler
transforms: ['random_flip']
use_att_loss: False
use_avai_gpus: False
use_cpu: False
use_metric_cuhk03: False
visrank: False
visrank_topk: 20
weight_decay: 0.0005
weight_t: 1
weight_x: 0
width: 192
workers: 0


Collecting env info ...
** System info **
PyTorch version: 1.4.0
Is debug build: No
CUDA used to build PyTorch: 10.1

OS: Microsoft Windows 10 企业版
GCC version: Could not collect
CMake version: Could not collect

Python version: 3.7
Is CUDA available: Yes
CUDA runtime version: 10.1.105
GPU models and configuration: Could not collect
Nvidia driver version: Could not collect
cuDNN version: Could not collect

Versions of relevant libraries:
[pip] numpy==1.16.2

[pip] numpydoc==0.8.0

[pip] torch==1.4.0

[pip] torchreid==0.8.1

[pip] torchstat==0.0.7

[pip] torchsummary==1.5.1

[pip] torchvision==0.4.2
[conda] blas                      1.0                         mkl  

[conda] mkl                       2019.3                      203  

[conda] mkl-service               1.1.2            py37hb782905_5  

[conda] mkl_fft                   1.0.10           py37h14836fe_0  

[conda] mkl_random                1.0.2            py37h343c172_0  

[conda] torch                     1.4.0                    pypi_0    pypi

[conda] torchreid                 0.8.1                     dev_0    <develop>

[conda] torchstat                 0.0.7                    pypi_0    pypi

[conda] torchsummary              1.5.1                    pypi_0    pypi

[conda] torchvision               0.4.2                    pypi_0    pypi
        Pillow (5.4.1)

Building train transforms ...
+ resize to 384x192
+ random flip
+ to torch tensor of range [0, 1]
+ normalization (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
Building test transforms ...
+ resize to 384x192
+ to torch tensor of range [0, 1]
+ normalization (mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
=> Loading train (source) dataset
=> Loaded Market1501
  ----------------------------------------
  subset   | # ids | # images | # cameras
  ----------------------------------------
  train    |   751 |    12936 |         6
  query    |   750 |     3368 |         6
  gallery  |   751 |    15913 |         6
  ----------------------------------------
=> Loading test (target) dataset
=> Loaded Market1501
  ----------------------------------------
  subset   | # ids | # images | # cameras
  ----------------------------------------
  train    |   751 |    12936 |         6
  query    |   750 |     3368 |         6
  gallery  |   751 |    15913 |         6
  ----------------------------------------


  **************** Summary ****************
  train            : ['market1501']
  # train datasets : 1
  # train ids      : 751
  # train images   : 12936
  # train cameras  : 6
  test             : ['market1501']
  *****************************************


Building model: pcb_p6
Successfully loaded pretrained weights from "D:/weights_results/PVPM/pretrained_models/Pretrain_PCB_model.pth.tar-60"
Building softmax-engine for image-reid
##### Evaluating market1501 (source) #####
Extracting features from query set ...
Done, obtained 3368-by-12288 matrix
Extracting features from gallery set ...
Done, obtained 15913-by-12288 matrix
Speed: 0.0929 sec/batch
Computing distance matrix with metric=euclidean ...
Computing CMC and mAP ...
** Results **
mAP: 73.4%
CMC curve
Rank-1  : 90.6%
Rank-3  : 95.0%
Rank-5  : 96.6%
Rank-10 : 97.6%
Rank-20 : 98.5%

三、联系方式

邮件:nickhuang1996@126.com

悲恋花丶无心之人 CSDN认证博客专家 深度学习 神经网络 Pytorch
计算机视觉在读研究生,熟悉Pytorch,MXNet,TensorFlow,Keras等深度学习框架,主要涉及的领域有目标检测,语义分割,超分辨率重建,行人重识别等。
个人GitHub网址为:https://github.com/nickhuang1996
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值