leetcode_1365. 有多少小于当前数字的数字

目录

一、题目内容

二、解题思路

三、代码


一、题目内容

给你一个数组 nums,对于其中每个元素 nums[i],请你统计数组中比它小的所有数字的数目。

换而言之,对于每个 nums[i] 你必须计算出有效的 j 的数量,其中 j 满足 j != i 且 nums[j] < nums[i] 。

以数组形式返回答案。

示例 1:

输入:nums = [8,1,2,2,3]
输出:[4,0,1,1,3]
解释: 
对于 nums[0]=8 存在四个比它小的数字:(1,2,2 和 3)。 
对于 nums[1]=1 不存在比它小的数字。
对于 nums[2]=2 存在一个比它小的数字:(1)。 
对于 nums[3]=2 存在一个比它小的数字:(1)。 
对于 nums[4]=3 存在三个比它小的数字:(1,2 和 2)。

示例 2:

输入:nums = [6,5,4,8]
输出:[2,1,0,3]

示例 3:

输入:nums = [7,7,7,7]
输出:[0,0,0,0]

提示:

2 <= nums.length <= 500
0 <= nums[i] <= 100

二、解题思路

利用字典存储nums里元素的频数,然后累加小于每个元素的频数即可。

三、代码

class Solution:
    def smallerNumbersThanCurrent(self, nums: list) -> list:
        nums_dict = {}
        res = []
        for i in range(101):
            nums_dict[i] = 0

        for num in nums:
            nums_dict[num] += 1
            res.append(0)

        k = 0
        for num in nums:
            for k_num, v in nums_dict.items():
                if k_num < num:
                    res[k] += v
                else:
                    break
            k += 1
        return res



if __name__ == '__main__':
    nums = [8, 1, 2, 2, 3]
    s = Solution()
    ans = s.smallerNumbersThanCurrent(nums)
    print(ans)
悲恋花丶无心之人 CSDN认证博客专家 深度学习 神经网络 Pytorch
计算机视觉在读研究生,熟悉Pytorch,MXNet,TensorFlow,Keras等深度学习框架,主要涉及的领域有目标检测,语义分割,超分辨率重建,行人重识别等。
个人GitHub网址为:https://github.com/nickhuang1996
©️2020 CSDN 皮肤主题: Age of Ai 设计师:meimeiellie 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值