leetcode_1202. 交换字符串中的元素

目录

一、题目内容

二、解题思路

三、代码


一、题目内容

给你一个字符串 s,以及该字符串中的一些「索引对」数组 pairs,其中 pairs[i] = [a, b] 表示字符串中的两个索引(编号从 0 开始)。

你可以 任意多次交换 在 pairs 中任意一对索引处的字符。

返回在经过若干次交换后,s 可以变成的按字典序最小的字符串。

示例 1:

输入:s = "dcab", pairs = [[0,3],[1,2]]
输出:"bacd"
解释: 
交换 s[0] 和 s[3], s = "bcad"
交换 s[1] 和 s[2], s = "bacd"

示例 2:

输入:s = "dcab", pairs = [[0,3],[1,2],[0,2]]
输出:"abcd"
解释:
交换 s[0] 和 s[3], s = "bcad"
交换 s[0] 和 s[2], s = "acbd"
交换 s[1] 和 s[2], s = "abcd"

示例 3:

输入:s = "cba", pairs = [[0,1],[1,2]]
输出:"abc"
解释:
交换 s[0] 和 s[1], s = "bca"
交换 s[1] 和 s[2], s = "bac"
交换 s[0] 和 s[1], s = "abc"

提示:

1 <= s.length <= 10^5
0 <= pairs.length <= 10^5
0 <= pairs[i][0], pairs[i][1] < s.length
s 中只含有小写英文字母

二、解题思路

并查集,需要找到每个区间的最小索引和最大,可能出现多个区间起点为键值的列表,列表里是那些之后的可以连通节点;

对每个区间列表对应的字符进行排序,然后放在对应索引的位置中,即是按字典序最小的字符串。

三、代码

from collections import defaultdict
class Solution:
    def smallestStringWithSwaps(self, s: str, pairs: list) -> str:
        if len(pairs) == 0:
            return s
        p = [-1 for _ in range(len(s))]

        def find(x):
            if p[x] < 0:
                return x
            return find(p[x])

        def merge(x1, x2):
            if x1 == x2:
                return
            if x1 < x2:
                p[x2] = x1
            else:
                p[x1] = x2

        for pair in pairs:
            x1 = find(pair[0])
            x2 = find(pair[1])
            merge(x1, x2)

        x_dict = defaultdict(list)
        for i in range(len(s)):
            x = find(i)
            x_dict[x].append(i)

        res = ['' for _ in range(len(s))]
        for k, list_v in x_dict.items():
            s_in_list_v = [s[i] for i in list_v]
            s_in_list_v.sort()
            for i in range(len(list_v)):
                res[list_v[i]] = s_in_list_v[i]
        return ''.join(res)


if __name__ == '__main__':
    s = "dcab"
    pairs = [[0,3],[1,2]]
    ss = Solution()
    ans = ss.smallestStringWithSwaps(s, pairs)
    print(ans)


悲恋花丶无心之人 CSDN认证博客专家 深度学习 神经网络 Pytorch
计算机视觉在读研究生,熟悉Pytorch,MXNet,TensorFlow,Keras等深度学习框架,主要涉及的领域有目标检测,语义分割,超分辨率重建,行人重识别等。
个人GitHub网址为:https://github.com/nickhuang1996
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页
实付 29.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值